
IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 4, DECEMBER 2021 1165

On Streaming Codes With Unequal Error Protection
Mahdi Haghifam , M. Nikhil Krishnan , Ashish Khisti , Member, IEEE,

Xiaoqing Zhu , Senior Member, IEEE, Wai-Tian Tan, Senior Member, IEEE,
and John Apostolopoulos, Fellow, IEEE

Abstract—Error control codes for real-time interactive
applications such as audio and video streaming must operate
under strict delay constraints and be resilient to burst losses.
Previous works have characterized optimal streaming codes that
guarantee perfect and timely recovery of all source packets
when the burst loss is below a certain maximum threshold.
In this work, we generalize the notion of streaming codes to
the unequal error protection (UEP) setting. Toward this end,
we define two natural notions of streaming codes; symbol-level
UEP and packet-level UEP. In the symbol-level UEP, the symbols
within each source packet have varying recoverability require-
ments. In the packet-level UEP scenario, packets at even time
slots and odd time slots have different recovery guarantees. We
discuss practical motivations for both settings and develop coding
schemes. We establish optimality or near-optimality guarantees
through information-theoretic converse bounds. Simulations over
Gilbert and Fritchman channels show that our coding schemes
outperform baseline schemes over a wide range of channel
parameters.

Index Terms—Streaming codes, low-latency communication,
unequal error protection.

I. INTRODUCTION

REAL-TIME streaming applications such as interactive
audio/video conferencing, online gaming, and augmented

reality require high reliability, low latency, and preferably
in-order delivery of source packets. In this setup, the encoder
must operate on a stream of source packets, in a sequential
fashion. Likewise, the decoder must attempt to reconstruct
the source packets in-order and by their playback deadlines.
There are two main error correction approaches to combat
packet losses in communication networks; Automatic Repeat
Request (ARQ) and Forward Error Correction (FEC). ARQ is
inherently inferior when considering low-latency constraints,

Manuscript received May 1, 2021; revised September 4, 2021; accepted
November 3, 2021. Date of publication November 9, 2021; date of current
version December 23, 2021. This article was presented in part at the 29th
Biennial Symposium on Communications (BSC) [1]. (Mahdi Haghifam and
M. Nikhil Krishnan contributed equally to this work.) (Corresponding author:
M. Nikhil Krishnan.)

Mahdi Haghifam and Ashish Khisti are with the Department of Electrical
and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4,
Canada (e-mail: mahdi.haghifam@mail.utoronto.ca; akhisti@ece.utoronto.ca).

M. Nikhil Krishnan was with the Department of Electrical and Computer
Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada. He is
now with the International Institute of Information Technology Bangalore,
Bengaluru 560100, India (e-mail: nikhilkrishnan.m@gmail.com).

Xiaoqing Zhu, Wai-Tian Tan, and John Apostolopoulos are with
Cisco Systems, San Jose, CA 95134 USA (e-mail: xiaoqzhu@cisco.com;
dtan2@cisco.com; john.apostolopoulos@gmail.com).

This article has supplementary downloadable material available at
https://doi.org/10.1109/JSAIT.2021.3126687, provided by the authors.

Digital Object Identifier 10.1109/JSAIT.2021.3126687

especially for long distance communication. For that reason,
FEC schemes are considered more appropriate candidates in
applications such as interactive voice/video communication
and multi-player gaming.

In designing FEC for streaming applications, both funda-
mental limits and coding schemes can be considerably different
from classical systems, which do not have to satisfy low-latency
constraints. A new class of error correction codes for stream-
ing applications is introduced in [2]. The encoder observes a
semi-infinite source stream — one source packet is revealed
in each time slot — and maps it to a coded output stream
of rate R. The channel is modeled as a burst-erasure channel,
i.e., starting at an arbitrary time, it introduces an erasure-burst
of maximum length B. The decoder is required to reconstruct
each source packet with a maximum delay T . In [2], a funda-
mental relationship between R, B and T is established and a
novel optimal construction is proposed. We will refer to this
family of codes as streaming codes in this work. It is worth
mentioning that random linear combinations, popularly used
in, e.g., network coding, do not attain the optimal performance.
In [2]–[5], streaming codes are extended to channels with both
burst and isolated erasures. We refer the reader to [6]–[10] and
the references therein for various extensions of these works.

To the best of our knowledge, all prior works on streaming
codes assume that the source packets are of equal impor-
tance. The code constructions discussed in these prior works
guarantee perfect recovery of all the source packets when
the burst length is below a certain predetermined threshold.
However, these constructions fail to recover when the length
of the erasure burst exceeds this threshold. In communica-
tion channels, when the length of erasure burst is random,
such codes suffer from cliff effect as shown in [3]–[5]. In
this work, we consider an extension of the streaming codes
framework, which allows for unequal error protection (UEP).
Inspired by the real-world applications, we introduce two dif-
ferent notions of UEP. The first notion is symbol-level UEP,
where we assume that each source packet consists of two
sub-packets. While both sub-packets have the same recovery
deadline, the high-priority sub-packet should have a higher
level of error protection. Particularly, we require both sub-
packets to be recovered within a delay of T when the length
of the erasure burst is no greater than a certain threshold, say
BL. If the length of the erasure burst is greater than BL, but less
than a higher threshold, say BI > BL, only the high-priority
sub-packets need to be recovered within a delay of T . The sec-
ond notion is packet-level UEP. Here we assume that when the
burst is below a nominal threshold BL, all source packets must

2641-8770 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The University of Toronto. Downloaded on November 15,2022 at 20:23:07 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2719-9158
https://orcid.org/0000-0003-0089-676X
https://orcid.org/0000-0002-2331-8965
https://orcid.org/0000-0001-9413-7240

1166 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 4, DECEMBER 2021

be recovered within a delay of T . When the burst is greater
than BL, but less than BI , we require that only the packets in
even time slots must be recovered, while the packets in odd
time slots need not be recovered.

Both symbol-level and packet-level UEP have natural appli-
cations. In scalable video coding [11], base layer maps to
high-priority sub-packets, while the refinement layer maps to
low-priority sub-packets (aligns with the symbol-level UEP
setting). The availability of base layer will lead to reconstruc-
tion of a lower quality video when the channel introduces a
longer erasure burst, whereas the availability of both base and
refinement layers will lead to reconstruction of higher qual-
ity video. Similarly, for the Internet, packet headers are more
important and need better protection to ensure that the actual
data gets through. Thus, even though the final objective is
delivering the payload data, the physical layer should provide
a better protection to such protocol information. As a motiva-
tion for packet-level UEP, consider multiple description coding
of video, where the frames at even times are compressed as ref-
erence I frames while the frames at odd times are compressed
using predictive coding as P frames. In the presence of long
burst losses, a packet-level UEP will recover I frames to yield a
baseline reconstruction, while during periods of nominal burst
losses both I and P frames will be recovered.

There has been a long-standing interest in the area of
unequal error protection. The simplest approach to UEP is
just allocating separate channels for different kinds of data.
However, in many systems, we have to use the same under-
lying channel for transmission. The literature on UEP dates
back to at least 1958 [12] and linear codes for UEP were
proposed by Masnick and Wolf [13]. In recent literature, a
scheme called Priority Encoded Transmission was proposed
in [14] for Internet-type channels. We note that these prior
works deal with block codes. The authors of [15] consider
the problem of designing UEP codes, in the context of video
streaming. The setup in [15] is different from what we pur-
sue in this work. For instance, in [15], there is no strict delay
requirement, and the code is based on Maximum Distance
Separable (MDS) codes. To our knowledge, the present paper
is the first work that studies UEP streaming codes.

A. Organization of the Present Paper

We begin with formally defining the problem setup in
Section II. In Section III, we propose an achievable scheme
for the symbol-level UEP setup, which is applicable for all
parameters. Using an information-theoretic converse bound,
we conclude our scheme is optimal in the sense that it attains
the maximum achievable rate of any symbol-level UEP stream-
ing code. Our code construction is explicit, and the required
field size for our construction is two.

In Section IV, we present our results for the packet-level
UEP setup. We provide a code construction for all parame-
ters. Using an information-theoretic converse, we show that the
proposed construction is near-optimal and achieves within one
unit of the minimum possible delay. We also propose code con-
structions, which are optimal for specific parameter regimes.
Again, all these constructions are explicit, and require only a
field size of two.

In Section V, we present simulation results which indicate
that the newly proposed streaming code constructions outper-
form existing ones for some instances of Gilbert and Fritchman
channels.

B. Notation

The set of non-negative integers is denoted by Z+. The set
of natural numbers {1, 2, 3, . . .} is given by N. All the elements
of any matrix considered in this paper are drawn from a finite
field Fq with q elements, where 0 and 1 denote the additive
and the multiplicative identities, respectively. For all the code
constructions that we propose, we have q = 2. The set of
k-dimensional vectors over Fq is denoted by F

k
q, and the set

of k × n matrices over Fq is denoted by F
k×n
q . For a, b ∈ Z+,

we use [a : b] to denote {i ∈ Z+ | a ≤ i ≤ b}. Similarly,
[a : b) � {i ∈ Z+ | a ≤ i < b}. We reserve boldface, upper
case letters to denote matrices; e.g., G, In. We use underbars
to denote column vectors; for instance, s(t), x(t).

II. PROBLEM SETTING, PRELIMINARIES AND MAIN

RESULTS

A. Problem Setting

Let k and n be integers satisfying 0 < k < n. Consider a
scenario that in each (discrete) time-t, a source packet s(t) �
[s0(t) s1(t) · · · sk−1(t)]� ∈ F

k×1
q arrives at the source, where

t ∈ [0 : ∞). The source has access to a set of systematic
encoders {Et}t∈[0:∞), where:

Et : F
k×1
q × · · · × F

k×1
q

︸ ︷︷ ︸

t + 1 times

→ F
n×1
q .

At time-t, the systematic and causal encoder Et maps t + 1
source packets {s(i)}t

i=0 to a coded packet x(t) ∈ F
n×1
q of the

form (up to a permutation of entries):

x(t) �
[

s(t)� p(t)�
]�

. (1)

Here, p(t) � [p0(t) p1(t) · · · pn−k−1(t)]� ∈ F
n−k
q will be

referred to as the parity packet at time-t. The parity packet p(t)
is a deterministic function of the source packets {s(i)}t

i=0. The
source transmits the coded packets to a receiver over a packet
erasure channel. We do not account for propagation delay in
our setting and hence the coded packets (if not erased by the
channel) instantaneously reach the receiver. Let y(t) denote the
received packet at time-t which is given by:

y(t) =
{∗, if x(t) is erased,

x(t), otherwise.

The receiver has access to a set of decoders {Dt}t∈[0:∞), where:

Dt :
(

F
n×1
q ∪ {∗}

)

× · · · ×
(

F
n×1
q ∪ {∗}

)

︸ ︷︷ ︸

t + 1 + T times

→ F
k×1
q .

At time-(t + T), the decoder Dt provides a deterministic esti-
mate ŝ(t) � [ŝ0(t) ŝ1(t) . . . ŝk−1(t)]� of s(t) using {y(i)}t+T

i=0 .
Note that the decoders are delay-constrained as an estimate
of each s(t) has to be produced by time-(t + T) (or before).
Any instance of an ({Et}, {Dt}) pair will be referred to as an

Authorized licensed use limited to: The University of Toronto. Downloaded on November 15,2022 at 20:23:07 UTC from IEEE Xplore. Restrictions apply.

HAGHIFAM et al.: ON STREAMING CODES WITH UNEQUAL ERROR PROTECTION 1167

(n, k, T)q streaming code (or simply, a streaming code). As
each coded packet has length n and each source packet has
length k, the rate of a streaming code is naturally given by k

n .
Definition 1 (Erasure Pattern): An erasure pattern e∞ �

{ei}∞i=0 is a binary sequence such that ei = 1 if and only if
y(i) = ∗.

Fix i ∈ [0 : k−1] and t ∈ [0 : ∞). Given an erasure pattern,
a particular source symbol si(t) is said to be recoverable with
delay T if the decoder Dt is able to precisely recover si(t) by
time-(t +T), i.e., the estimate ŝi(t) = si(t). Similarly, a source
packet s(t) is said to be recoverable with delay T if the estimate
ŝ(t) = s(t).

Definition 2 (B-Bursty Erasure Pattern): Let B ∈ N. An
erasure pattern e∞ is said to be a B-bursty erasure pattern if
there exists � ∈ [0 : ∞) such that {i | ei = 1} ⊆ [� : �+B−1],
i.e., packet erasures are confined to within at most B consec-
utive time slots. Note that we consider not just the “maximal”
erasure pattern where packets in all the B consecutive time
slots are erased (subsets consisting of fewer erasures are also
part of the definition).

Definition 3 [(B, T)-Recoverability of a Source Symbol]:
Fix i ∈ [0 : k − 1] and t ∈ [0 : ∞). Given a streaming code,
i.e., ({El}l∈[0:∞), {Dl}l∈[0:∞)), the source symbol si(t) within
the source packet s(t) is said to be (B, T)-recoverable if si(t)
is recoverable with delay T in presence of any B-bursty erasure
pattern.

Definition 4 [(B, T)-Recoverability of a Source Packet]: Fix
t ∈ [0 : ∞). Given a streaming code, the source packet s(t) is
said to be (B, T)-recoverable if s(t) is recoverable with delay
T in presence of any B-bursty erasure pattern.

In this paper, we consider two different recoverability set-
tings. In the first setting, we assume that some symbols
within each source packet are of high-priority compared to
others. In the second setting, we consider certain source pack-
ets to be of high-priority than others. For the high-priority
symbols (similarly, packets), we impose a superior, (BI, T)-
recoverability property whereas for the low-priority ones, we
impose (BL ≤ BI, T)-recoverability. We will now formally
introduce the two settings pursued in this paper.

1) (γ, BI, BL, T)-Symbol-Level Unequal Error Protection:
Let 0 ≤ γ ≤ 1 be a real number such that γ k is
an integer, where k, as seen earlier, is the size of the
source packet s(t). A streaming code is said to pos-
sess (γ, BI, BL, T)-symbol-level unequal error protection
(UEP) if the following recoverability conditions are
satisfied for all t ∈ [0 : ∞).

• The initial γ k symbols of s(t), denoted by
{s0(t), s1(t), . . . , sγ k−1(t)}, are all high-priority
symbols and are (BI, T)-recoverable.

• The rest of the source symbols {sγ k(t), sγ k+1(t),
. . . , sk−1(t)} are all (BL, T)-recoverable.

For convenience, we will refer to a streaming code pos-
sessing (γ, BI, BL, T)-symbol-level UEP property sim-
ply as a (γ, BI, BL, T)-UEP streaming code.

2) (BI, BL, T)-Packet-Level Unequal Error Protection:
A streaming coding is said to possess
(BI, BL, T)-packet-level UEP if the following conditions
hold.

• The source packets at even time slots (i.e.,
{s(2t)}t∈[0:∞)) are all (BI, T)-recoverable.

• The rest of the source packets, {s(2t + 1)}t∈[0:∞),
possess (BL, T)-recoverability.

We refer to a streaming code possessing (BI, BL, T)-
packet-level UEP property simply as a (BI, BL, T)-UEP
streaming code.

Remark 1: At first glance, the error protection provided by
(γ, BI, BL, T) or (BI, BL, T)-UEP streaming codes may appear
to be limiting, as these codes consider only a single burst
of length either BI or BL across all time slots [0 : ∞), as
per Definition 2. However, owing to the delay-constrained
decoder, these codes can in fact recover from any number of
burst erasures. For instance, high-priority source symbols in
a (γ, BI, BL, T)-UEP streaming code and high-priority source
packets in a (BI, BL, T)-UEP streaming code are recoverable
in presence of any number of bursts of length BI as long as
there is a guard interval (where there are no erasures) of T
time slots between the end of a burst and the beginning of a
subsequent burst. For instance, consider the following periodic
erasure pattern:

e∞ =
⎧

⎨

⎩

1, . . . , 1
︸ ︷︷ ︸

BI

, 0, 0, . . . , 0
︸ ︷︷ ︸

T

, 1, . . . , 1, 0, 0, . . . , 0, . . .

⎫

⎬

⎭

.

Similarly, the low-priority source symbols or source packets
tolerate multiple length-BL bursts which are separated by at
least T time slots.

Remark 2: Note that the parameters BI, BL satisfy BL ≤
BI by definition. In addition, we also have BI ≤ T , as other-
wise, a burst erasure of length BI starting at time-2t can erase
all the coded packets {x(2t), x(2t+1), . . . , x(2t+T), . . . , x(2t+
BI −1)} making it impossible to recover any of the symbols in
s(2t) with delay T . Moreover, in the packet-level UEP setting,
we also assume BI < T (strict inequality). This is because if
BI = T , in order to recover s(2t) consisting of k symbols by
time-(t + BI), the size of parity packet p(2t + BI) has to be
at least k. This can be easily accomplished by repeating each
source packet as the parity packet after BI = T time slots, i.e.,
p(t + BI) = s(t).

Remark 3: When BI = BL � BMS, both (γ, BI, BL, T)

and (BI, BL, T) UEP streaming code settings merge into a
single setting where all the source packets {s(t)}t∈[0:∞) are
(BMS, TMS)-recoverable (here, TMS � T). This setting, where
every source symbol (or packet) is treated equally important, is
pursued in earlier works [2]–[5]. We will refer to this setting as
the Martinian-Sundberg setting. As the fundamental limits and
the matching streaming code constructions are already known
when BI = BL, we will henceforth assume that BL < BI ≤ T
for (γ, BI, BL, T)-UEP streaming codes and BL < BI < T for
(BI, BL, T)-UEP streaming codes.

Table I summarizes key notation that we use while describ-
ing symbol-level and packet-level UEP streaming codes. We
will now present an overview of the Martinian-Sundberg set-
ting. The optimal streaming code construction under this
setting appearing in [2] forms a key ingredient of most of
the code constructions in the present paper.

Authorized licensed use limited to: The University of Toronto. Downloaded on November 15,2022 at 20:23:07 UTC from IEEE Xplore. Restrictions apply.

1168 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 4, DECEMBER 2021

TABLE I
A SUMMARY OF KEY NOTATION USED WHILE DESCRIBING SYMBOL-LEVEL AND PACKET-LEVEL UEP STREAMING CODES

Fig. 1. An illustration of the diagonal interleaving procedure. Each column here depicts a coded packet, where the initial k symbols constitute a source
packet. Each diagonal here corresponds to codeword of a systematic [n, k] block code C. In the figure, we have r � n − k.

B. Martinian-Sundberg Setting

Martinian-Sundberg setting is a special case of the two set-
tings that we pursue in this paper, where BI = BL � BMS.
We refer to a streaming code under this setting, which allows
recovery of all source packets in presence of any BMS-bursty
erasure pattern with delay TMS, as a (BMS, TMS)-streaming
code. Recall that k and n denote the source and the coded
packet sizes (in terms of the field elements in Fq). In [2], the
authors present the following upper bound on the rate R � k

n
of a (BMS, TMS)-streaming code:

R ≤ TMS

TMS + BMS
. (2)

The paper [2] also presents a novel family of codes namely
Maximally Short (MS) codes for a wide range of parame-
ters {BMS, TMS}, which are rate-optimal with respect to (2).
In a subsequent paper [16], the authors provide rate-optimal
(BMS, TMS)-streaming codes for all parameters {BMS, TMS}.

Let C denote a systematic [n, k] block code, which has gen-
erator matrix of the form G � [Ik P]. This code can be utilized
to obtain parity packets {p(t)}t∈[0:∞) via a certain diagonal

interleaving technique, in the following manner:
[

p0(t) p1(t + 1) · · · pn−k−1(t + n − k − 1)
]

= [

s0(t − k) s1(t − k + 1) · · · sk−1(t − 1)
]

P. (3)

Fig. 1 illustrates that when the resulting coded packets are
arranged as a sequence of columns, each diagonal corresponds
to a codeword in C, hence explaining the name “diagonal inter-
leaving”. The rate-optimal codes presented in [16] are obtained
via diagonally interleaving codewords of carefully designed
scalar block codes.

In [16], given the parameters {BMS, TMS}, the generator
matrix of C is chosen as follows:

G =
[

IBMS 0BMS×(TMS−BMS) IBMS

0(TMS−BMS)×B G′

]

, (4)

where G′ is a (TMS − BMS) × TMS matrix of the form
[ITMS−BMS P′] satisfying the following property; any set of
TMS−BMS consecutive columns (including wrap-around) of G′
should be independent. In [17], the authors provide an explicit
construction of G′ over F2 for any {BMS, TMS} based on the
matrix P̂(m, n) as described below. For m, n ∈ N, consider the

Authorized licensed use limited to: The University of Toronto. Downloaded on November 15,2022 at 20:23:07 UTC from IEEE Xplore. Restrictions apply.

HAGHIFAM et al.: ON STREAMING CODES WITH UNEQUAL ERROR PROTECTION 1169

following recursive definition of the matrix P̂(m, n) ∈ F
m×n
2 :

P̂(m, n) =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

[

Im P̂(m, n − m)
]

if m < n,
[

In

P̂(m − n, n)

]

else if m > n,

Im else.

The paper [17] chooses G′ = P̂(TMS − BMS, TMS).
Remark 4: After setting BI = BL = BMS and T = TMS,

from Remark 2, it follows that the parameters {BMS, TMS}
satisfy BMS ≤ TMS.

C. Main Results

We summarize here the main theoretical results of the
present paper. For the symbol-level UEP scenario, we propose
a coding scheme and provide a matching rate upper bound
(Section III). It is interesting to note that the optimal coding
scheme in this scenario, is obtained by encoding the streams
of high-priority and low-priority sub-packets separately using
(BMS = BI, TMS = T) and (BMS = BL, TMS = T) streaming
codes, respectively.

Result 1: The capacity of (γ, BI, BL, T)-symbol-level UEP
streaming codes is given by:

T

T + BL + γ (BI − BL)
.

For the packet-level UEP scenario, we propose a cod-
ing scheme (Section IV-A) and show its near-optimality by
deriving rate upper bounds (Section IV-B).

Result 2: We propose a (BI, BL, T)-packet-level UEP
streaming code construction with achievable rate O(1/T) away
from the rate upper bound. In other words, our construction
achieves within one unit of the minimum possible delay.

For some parameter regimes, we also propose optimal
packet-level UEP streaming code constructions (Section IV-C)
that match the rate outer bound.

Result 3: We provide two rate-optimal code constructions
that together cover the regime where BI is odd and BL is even.

III. SYMBOL-LEVEL UNEQUAL ERROR

PROTECTION CODES

The following theorem presents the main result for
(γ, BI, BL, T)-UEP streaming codes.

Theorem 1: The supremum of rates achievable by
(γ, BI, BL, T)-UEP streaming codes, i.e., the capacity of
(γ, BI, BL, T)-UEP streaming codes, is given by:

Cγ,BI ,BL,T = T

T + BL + γ (BI − BL)
. (5)

Proof: The proof is divided into two parts; Achievability
and Converse.

1) Achievability: For notational convenience, assume that
γ k is an integer. Recall from Section II that each
source packet is divided into two sub-packets as s(t) �
[sI(t)� sL(t)�]�, where sI(t) ∈ F

γ k
q and sL(t) ∈ F

(1−γ)k
q .

Here sI(t) and sL(t) consist of high-priority and low-
priority source symbols, respectively. The main idea in
the code construction is to apply (BMS, TMS)-streaming

codes to encode high-priority and low-priority source
sub-packets separately. We then concatenate the result-
ing “coded sub-packets”.

a) Apply (BMS = BI, TMS = T)-streaming code
(recall the construction described in Section II-B)
to the stream of source sub-packets {sI(t)}t∈[0:∞)

and denote the resulting stream of “parity sub-
packets” as {pI(t)}t∈[0:∞).

b) Apply (BMS = BL, TMS = T)-streaming code to
the stream of source sub-packets {sL(t)}t∈[0:∞) and
denote the resulting stream of parity sub-packets
as {pL(t)}t∈[0:∞).

Finally, we construct the coded packet at time-t as
follows:

x(t) =
[

sI(t)
� sL(t)� pI(t)

� pL(t)�
]�

.

We will show that the construction satisfies all the
desired properties of a (γ, BI, BL, T)-UEP streaming
code. Without loss of generality, assume that the chan-
nel introduces a single burst of length B. At the decoder
side, conditioned on the length of the burst introduced by
channel, we have two cases.

a) B ≤ BL: In this case, sL(i) can be recovered
using all non-erased coded sub-packets within the
set {[sL(t)� pL(t)�]�}t∈[0:i+T] due to the proper-
ties of (BMS = BL, TMS = T)-streaming codes.
Similarly, since B < BI , sI(i) can be recovered
using all non-erased coded sub-packets within the
set {[sI(t)� pI(t)�]�}t∈[0:i+T].

b) BL < B ≤ BI: In this case, the decoder dis-
cards all non-erased parity sub-packets within
{pL(t)}t∈[0:i+T] and uses non-erased coded sub-
packets within {[sI(t)� pI(t)�]�}t∈[0:i+T] to recover
sI(i).

Hence, we have the following lower bound on the
capacity of (γ, BI, BL, T)-UEP streaming codes:

k

k + (1 − γ) kBL
T + γ kBI

T

= T

T + BL + γ (BI − BL)

≤ Cγ,BI ,BL,T .

Here, we have used the fact that the parity packet size
of a (B, T)-streaming code is given by k B

T .
2) Converse: We will begin with providing some intu-

ition behind the converse. Let r � n − k denote the
size of each parity packet p(t). Consider the scenario
that coded packets x(0), . . . , x(BI − 1) are erased and
rest of the coded packets are non-erased. Then, by
the definition of (γ, BI, BL, T)-UEP streaming codes,
the decoder can recover the high-priority source sub-
packets sI(0), . . . , sI(BI − BL − 1) using coded packets
x(BI), . . . , x(BI −BL−1+T). Now, assume that the low-
priority source sub-packets sL(0), . . . , sL(BI−BL−1) are
“revealed” to the decoder. Together with the knowledge
of sI(0), . . . , sI(BI −BL−1), the decoder can reconstruct
coded packets x(0), . . . , x(BI −BL −1). In the next step,
the decoder essentially deals with a single burst of length
BL spanning time slots [BI −BL : BI −1]. It follows from

Authorized licensed use limited to: The University of Toronto. Downloaded on November 15,2022 at 20:23:07 UTC from IEEE Xplore. Restrictions apply.

1170 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 4, DECEMBER 2021

the definition of (γ, BI, BL, T)-UEP streaming code that
both high-priority and low-priority source sub-packets
in this interval can be recovered using coded packets
x(0), . . . , x(BI −BL−1), x(BI), . . . , x(BI −1+T). Coded
packets x(0), . . . , x(BI −1+T) contain “information” of
(BI +T)k symbols. As we obtained these (BI +T) coded
packets using coded packets x(BI), . . . , x(BI − 1 + T)

(contain T(k + r) symbols) and revealed source sub-
packets sL(0), . . . , sL(BI −BL −1) (contain (1−γ)(BI −
BL)k symbols), we have (1−γ)(BI −BL)k +T(k + r) ≥
(BI + T)k. As rate is given by k

k+r , we thus have an
upper bound on the rate. In the following, we formalize
these steps. For j ≥ i, let sj

i � {s(t)}j
t=i, aj

i � {sI(t)}j
t=i,

bj
i � {sL(t)}j

t=i and xj
i � {x(t)}j

t=i. We have:

(1 − γ)(BI − BL)k + T(k + r) (6)

≥ H
(

bBI−BL−1
0

)

+ H
(

xBI−1+T
BI

)

≥ H
(

bBI−BL−1
0 , xBI−1+T

BI

)

= H
(

bBI−BL−1
0 , xBI−1+T

BI
, aBI−BL−1

0

)

(7)

= H
(

xBI−BL−1
0 , xBI−1+T

BI

)

(8)

= H
(

xBI−BL−1
0 , xBI−1+T

BI
, sBI−1

BI−BL

)

(9)

= H
(

xBI−1+T
0

)

(10)

= (BI + T)k. (11)

Here (7) follows from the (BI, T)-recoverability prop-
erty of high-priority source sub-packets; (8) is true as,
given sBI−BL−1

0 , parity packets in time slots [0 : BI −
BL − 1] can be determined; (9) follows from the
(BL, T)-recoverability property of low-priority source
sub-packets and the (BI, T)-recoverability property of
high-priority source sub-packets; (10) is true as parity
packets in time slots [BI − BL : BI − 1] is a func-
tion of source packets sBI−1

0 ; (11) follows from the fact
that source symbols are independent. Hence, for any
(γ, BI, BL, T)-UEP streaming code, from (6) and (11),
we have:

R = k

k + r
≤ T

T + BL + γ (BI − BL)
.

Thus:

Cγ,BI ,BL,T ≤ T

T + BL + γ (BI − BL)
.

Thus, the proposed code construction is a rate-optimal
(γ, BI, BL, T)-UEP streaming code.

Remark 5: The construction in Theorem 1 is over F2, as
the constituent codes, i.e., (BMS = BI, TMS = T) and (BMS =
BL, TMS = T) streaming codes are both over F2.

IV. PACKET-LEVEL UNEQUAL ERROR PROTECTION CODES

In a (BI, BL, T)-UEP streaming code, source packets in
the even time slots, i.e., {s(2t)}t∈[0:∞), are of high-priority
and hence, have (BI, T)-recoverability. The remaining pack-
ets {s(2t + 1)}t∈[0:∞) possess (BL, T)-recoverability. As noted

earlier in Remarks 2 and 3, we assume that the parameters
{BI, BL, T} satisfy 0 ≤ BL < BI < T . In Section IV-A, we
present a (BI, BL, T)-UEP streaming code construction for all
parameters {BI, BL, T}. In Section IV-B, we provide converse
results, i.e., rate upper bounds, which show that the construc-
tion is near-optimal. Subsequently, in Section IV-C, we present
two optimal (BI, BL, T)-UEP streaming code constructions
which apply for specific parameter ranges.

A. Explicit Construction of (BI, BL, T)-UEP/Streaming
Codes for all Parameters

We initially provide a construction in Section IV-A1 (which
will be referred to as Construction A) for the case BL = 0 and
0 < BI < T . We will show later in Section IV-A2 that this
construction can easily be extended for 0 ≤ BL < BI < T
(Construction B). Both code constructions are over F2. In
Construction A, we set BL = 0 and focus on achieving the
(BI, T)-recoverability property of high-priority source pack-
ets. An outline of Construction A is as follows. We divide
each high-priority source packet in even time slots into two
source sub-packets. This results in two independent source
sub-packet streams. We then apply two MS codes separately
(one code to each source sub-packet stream) to produce two
parity sub-packet streams. The parity sub-packets correspond-
ing to one source sub-packet stream are placed in even time
slots, whereas those corresponding to the other source sub-
packet stream are placed in odd time slots. As consecutive
parity sub-packets within a parity sub-packet stream are two
time slots apart, the effective burst length and delay con-
straint to be tolerated by the two underlying MS codes will
be approximately BI

2 and T
2 , respectively.

1) Construction A (BL = 0, 0 < BI < T): As BL = 0, there
is no recovery guarantee on source packet s(2t+1) if x(2t+1)

is erased, t ∈ [0 : ∞). Hence, when BL = 0, we construct each
parity packet p(t) as a function of only the high-priority source
packets {s(2t′) | 2t′ ≤ t}. We divide the scenario of BL = 0
into two cases; (i) BI : even and (ii) BI : odd.

• BI is even: In this case, we provide a (BI, BL = 0, T)-
UEP streaming code construction with rate T−1

T−1+ BI
2

. Let

the source packet s(t) at time-t be of size k = T − 1.
We partition the source packet into two sub-packets s′(t)
and s′′(t) of size
T−1

2 � and �T−1
2 �, respectively, in the

following manner:

s′(t) �
[

s′
0(t) s′

1(t) · · · s′
⌈

T−1
2

⌈

−1
(t)

]�

=
[

s0(t) s1(t) · · · s⌈ T−1
2

⌈

−1
(t)

]�
,

s′′(t) �
[

s′′
0(t) s′′

1(t) · · · s′′
� T−1

2 �−1
(t)

]�

=
[

s⌈ T−1
2

⌈(t) s⌈ T−1
2

⌈

+1
(t) · · · sk−1(t)

]�
.

Now consider the following two streams of source
sub-packets:

{

s(1)(i)
}

i∈[0:∞)
,
{

s(2)(i)
}

i∈[0:∞)
,

Authorized licensed use limited to: The University of Toronto. Downloaded on November 15,2022 at 20:23:07 UTC from IEEE Xplore. Restrictions apply.

HAGHIFAM et al.: ON STREAMING CODES WITH UNEQUAL ERROR PROTECTION 1171

Fig. 2. An illustration of the (BI = 4, BL = 0, T = 6)-UEP streaming code obtained via Construction A. The symbols marked in blue belong to coded
sub-packets produced by a (BMS = 2, TMS = 3)-streaming code. Symbols in orange belong to coded sub-packets of a (BMS = 2, TMS = 2)-streaming code.

where s(1)(i) � s′(2i), s(2)(i) � s′′(2i). We apply (BMS =
BI
2 , TMS =
T−1

2 �)-streaming code (optimal construction
described in Section II-B) to the stream of source sub-
packets {s(1)(i)}i∈[0:∞) to generate coded sub-packets of
the following form:

x(1)(i) �
[

s(1)(i)
p(1)(i)

]

, (12)

where p(1)(i) ∈ F

BI
2

2 is a parity sub-packet, which
is a function of source sub-packets {s(1)(i′)}i′∈[0:i−1].
Similarly, (BMS = BI

2 , TMS = �T−1
2 �)-streaming code is

applied to source sub-packets {s(2)(i)}i∈[0:∞) to generate
coded sub-packets of the form:

x(2)(i) �
[

s(2)(i)
p(2)(i)

]

, (13)

where parity sub-packet p(2)(i) ∈ F

BI
2

2 is a function of
source sub-packets {s(2)(i′)}i′∈[0:i−1]. As BI < T and
BI is even, it follows that �T−1

2 � ≥ BI
2 and hence for

both choices of TMS, we have TMS ≥ BMS. Hence, the
two required (BMS, TMS)-streaming codes do exist (see
Remark 4). As {s(1)(i′)}i′∈[0:i−1] and {s(2)(i′)}i′∈[0:i−1] are
derived by partitioning the high-priority source packets
{s(2i′)}i′∈[0:i−1], the parity sub-packets p(1)(i) and p(2)(i)
are functions of {s(2i′)}i′∈[0:i−1]. The parity packet p(t)
of the (BI, BL = 0, T)-UEP streaming code to be con-
structed is obtained from parity sub-packets {p(1)(i)} and
{p(2)(i)} as follows:

p(t) =
{

p(1)
(t

2

)

t is even

p(2)
(

t−1
2

)

t is odd.
(14)

Finally, the coded packet x(t) of the (BI, BL = 0, T)-
UEP streaming code is obtained by appending p(t) to the
source packet s(t) as in (1).

Example 1: We discuss here the construction of a (BI = 4,

BL = 0, T = 6)-UEP streaming code. We choose the source
packet size to be k = T − 1 = 5. Consider the two streams of
source sub-packets: {s(1)(i)}i∈[0:∞) and {s(2)(i)}i∈[0:∞), where
s(1)(i) � s′(2i), s(2)(i) � s′′(2i). Source sub-packets s′(2i)
and s′′(2i) consist of first three symbols and last two symbols
of s(2i), respectively. By applying a (BMS = 2, TMS = 3)-
streaming code to {s(1)(i)}i∈[0:∞), coded sub-packets {x(1)(i)}

of the form (12) are generated. Similarly, coded sub-packets
{x(2)(i)} (as in (13)) are generated from {s(2)(i)} by applying
a (BMS = 2, TMS = 2)-streaming code. Let the genera-
tor matrices for the underlying block codes which result in
(BMS = 2, TMS = 3) and (BMS = 2, TMS = 2) streaming
codes via diagonal interleaving be denoted by G(1) and G(2),
respectively. From (4), we have:

G(1) �

⎡

⎣

1 0 0 1 0
0 1 0 0 1
0 0 1 1 1

⎤

⎦,

G(2) �
[

1 0 1 0
0 1 0 1

]

.

Let p(l)(i) � [p(l)
0 (i)� p(l)

1 (i)�]�, for l = 1, 2. As seen in (3),
the parity symbols within {p(l)(i)} are obtained as follows:

[

p(1)
0 (t) p(1)

1 (t + 1)
]

=
[

s(1)
0 (t − 3) s(1)

1 (t − 2) s(1)
2 (t − 1)

]

⎡

⎣

1 0
0 1
1 1

⎤

⎦, (15)

[

p(2)
0 (t) p(2)

1 (t + 1)
]

=
[

s(2)
0 (t − 2) s(2)

1 (t − 1)
]
[

1 0
0 1

]

. (16)

Using (14) and definitions s(1)(i) � s′(2i), s(2)(i) � s′′(2i),
equations (15) and (16) will be transformed to:

[

p0(2t) p1(2t + 2)
]

= [s0(2t − 6) s1(2t − 4) s2(2t − 2)]

⎡

⎣

1 0
0 1
1 1

⎤

⎦,

[

p0(2t + 1) p1(2t + 3)
]

= [s3(2t − 4) s4(2t − 2)]

[

1 0
0 1

]

.

In Fig. 2, we illustrate the resulting streaming code across
time slots [8 : 16]. Assume that there is a BI-bursty erasure
pattern which erases coded packets x(8), . . . , x(11). All the
coded packets transmitted prior to time-8 and after time-11
are non-erased. It can be inferred from the figure that s′(8) is
recovered by time-14 and s′(10) by time-16. Similarly, s′′(8)

and s′′(10) are recovered by time-13 and time-15, respec-
tively. Hence, the whole source packets s(8) and s(10) are
recovered by time-14 and 16, respectively (delay T = 6).

Authorized licensed use limited to: The University of Toronto. Downloaded on November 15,2022 at 20:23:07 UTC from IEEE Xplore. Restrictions apply.

1172 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 4, DECEMBER 2021

Fig. 3. An illustration of the (BI = 3, BL = 0, T = 5)-UEP streaming code obtained via Construction A. The symbols marked in blue belong to coded
sub-packets of a (BMS = 2, TMS = 3)-streaming code. Symbols in orange belong to coded sub-packets of a (BMS = 2, TMS = 2)-streaming code.

• BI is odd: Here, the construction achieves the rate T
T+
 BI

2 � .

Let the source packet s(t) be of size k = T . We partition
each source packet s(t) into two sub-packets s′(t) and
s′′(t) of size
T

2 � and �T
2 �, respectively:

s′(t) �
[

s′
0(t) s′

1(t) · · · s′

 T

2 �−1
(t)
]�

=
[

s0(t) s1(t) · · · s
 T
2 �−1(t)

]�
,

s′′(t) �
[

s′′
0(t) s′′

1(t) · · · s′′
� T

2 �−1
(t)
]�

=
[

s
 T
2 �(t) s
 T

2 �+1(t) · · · sk−1(t)
]�

.

As in the previous case, consider source sub-
packets {s(1)(i)}i∈[0:∞), {s(2)(i)}i∈[0:∞), where s(1)(i) �
s′(2i), s(2)(i) � s′′(2i). By applying the optimal (BMS =

BI

2 �, TMS =
T
2 �)-streaming code to source sub-

packets {s(1)(i)}i∈[0:∞), the stream of parity sub-packets
{p(1)(i)}i∈[0:∞) is obtained. Similarly, the optimal (BMS =

BI

2 �, TMS = �T
2 �)-streaming code is applied to source

sub-packets {s(2)(i)}i∈[0:∞) to obtain {p(2)(i)}i∈[0:∞). As
BI < T and BI is odd, it follows that �T

2 � ≥
BI
2 �

and hence the two required (BMS, TMS)-streaming codes
do exist for both choices of TMS. Parity sub-packets

p(1)(i) ∈ F

 BI

2 �
2 and p(2)(i) ∈ F

 BI
2 �

2 are functions of
{s(1)(i′)}i′∈[0:i−1] and {s(2)(i′)}i′∈[0:i−1], respectively. The
parity packet p(t) of the (BI, BL = 0, T)-UEP streaming
code is determined as follows:

p(t) =
{

p(1)
(

t+1
2

)

t is odd

p(2)
(t

2

)

t is even.
(17)

Finally, coded packet x(t) of the (BI, BL = 0, T)-UEP
streaming code is constructed by appending parity packet
p(t) to the source packet s(t).

Example 2: Consider the construction of a (BI = 3,
BL = 0, T = 5)-UEP streaming code. Each source packet
s(t) consisting of k = T = 5 symbols is split to obtain
s′(t) � [s′

0(t) s′
1(t) s′

2(t)]
� = [s0(t) s1(t) s2(t)]� and s′′(t) �

[s′′
0(t) s′′

1(t)]
� = [s3(t) s4(t)]�. A (BMS = 2, TMS = 3)-

streaming code is invoked to generate parity sub-packets
{p(1)(i)}i∈[0:∞) from source sub-packets {s(1)(i)}i∈[0:∞), where

s(1)(i) � s′(2i). Similarly, a (BMS = 2, TMS = 2)-streaming
code is applied to generate {p(2)(i)}i∈[0:∞) from {s(2)(i)}i∈[0:∞),
where s(2)(i) � s′′(2i). The symbols within parity sub-packets
can be written in terms of symbols of source sub-packets
precisely as in (15) and (16). However, the way parity sub-
packets are mapped to parity packets differ slightly in (17)
(compared to (14)). Substituting (17) and definitions s(1)(i) �
s′(2i), s(2)(i) � s′′(2i) in (15) and (16), we have:

[

p0(2t − 1) p1(2t + 1)
] = [s0(2t − 6) s1(2t − 4) s2(2t − 2)]

×
⎡

⎣

1 0
0 1
1 1

⎤

⎦,

[

p0(2t) p1(2t + 2)
] = [s3(2t − 4) s4(2t − 2)]

[

1 0
0 1

]

.

In Fig. 3, we illustrate the resulting (BI = 3, BL = 0, T =
5)-UEP streaming code across time slots [8:16]. Assume that
there is a BI-bursty erasure pattern which erases coded packets
x(8), x(9), x(10). It can be inferred from the figure that s′(8)

is recovered by time-13 and s′(10) is recovered by time-15.
Similarly, s′′(8) and s′′(10) are recovered by time-12 and time-
14, respectively. Thus, the whole source packets s(8) and s(10)

are recovered by time-13 and 15, respectively (delay T = 5).
In the following proposition, we prove that Construction A

results in a (BI, BL = 0, T)-packet-level UEP streaming code,
i.e., all source packets of the form s(2t), t ∈ [0 : ∞), are
(BI, T)-recoverable.

Proposition 1: Construction A yields a (BI, BL = 0, T)-
packet-level UEP streaming code.

Proof: Let C denote the code obtained using Construction A.
We show here only the proof for the case when BI is even.
The proof can be extended in an analogous manner when BI

is odd.
As BL = 0, recall that we are not interested in the

recovery of source packets belonging to the odd time
slots if corresponding coded packets are erased. Hence,
in our construction, each parity packet p(t) is obtained
purely as a function of {s(2i) | 2i ≤ t}. By design,
{x(1)(i) � [s(1)(i)� p(1)(i)�]�}i∈[0:∞) are coded sub-packets of
a (BMS = BI

2 , TMS =
T−1
2 �)-streaming code. Let this code be

denoted by C(1)
e (the subscript e here denotes the BI even case).

Authorized licensed use limited to: The University of Toronto. Downloaded on November 15,2022 at 20:23:07 UTC from IEEE Xplore. Restrictions apply.

HAGHIFAM et al.: ON STREAMING CODES WITH UNEQUAL ERROR PROTECTION 1173

TABLE II
A SUMMARY OF PACKETS THAT ARE ERASED WHEN BI IS EVEN. THE TWO ROWS CORRESPOND TO THE TWO CASES; ERASURE BURST OF LENGTH BI

STARTS AT TIME-2t OR ELSE, TIME-(2t − 1). NOTE THAT FOR CONVENIENCE IN EXPOSITION, WE ARE IDENTIFYING SOURCE AND PARITY PACKETS

AS SEPARATE ENTITIES, EVEN THOUGH THEY ARE BOTH TRANSMITTED TOGETHER AS A SINGLE CODED PACKET. CONSIDER THE CASE WHEN THE

BURST STARTS AT TIME-(2t − 1) (ROW-2). ERASED PARITY PACKET p(2t − 1) � p(2)(t − 1) IS A FUNCTION OF NON-ERASED SOURCE SUB-PACKETS

{s(2)(i′)}i′∈[0:t−2] � {s′′(2i′)}i′∈[0:t−2] (WHICH ARE PART OF NON-ERASED CODED PACKETS {x(2i′)}i′∈[0:t−2]). HENCE, p(2t − 1) � p(2)(t − 1) IS

EFFECTIVELY NON-ERASED. THUS, SUB-PACKETS ERASED WHEN THE BURST STARTS AT TIME-(2t − 1) FORM A SUBSET OF THOSE IN THE CASE

WHEN THE BURST STARTS AT TIME-2t

Similarly, let C(2)
e denote the (BMS = BI

2 , TMS = �T−1
2 �)-

streaming code generating coded sub-packets {x(2)(i) �
[s(2)(i)� p(2)(i)�]�}i∈[0:∞).

Consider an erasure burst of length BI , which results in the
loss of BI

2 coded packets each from even and odd time slots. If
the erasure burst is starting at time-2t, for some t ≥ 0, coded
packets x(2t), x(2t+1), . . . , x(2t+BI−1) are erased. Similarly,
if the erasure burst is starting at time-(2t −1), for some t ≥ 1,
coded packets x(2t − 1), x(2t), . . . , x(2t + BI − 2) are erased.
In either case, erased source packets from the even time slots,
which need to be recovered with a delay of T , are given by
{s(2t), s(2t +2), . . . , s(2t +BI −2)}. In Table II, we provide a
summary of source sub-packets and parity sub-packets which
are erased from C(1)

e and C(2)
e , as a result of an erasure burst

starting at either time-2t or time-(2t − 1). If the burst is start-
ing at time-(2t − 1), the erased source sub-packets and parity
sub-packets are effectively a subset of those in the other case
(see the accompanying description of Table II). Hence, from
here on, we assume that the erasure burst is starting at time-
2t. Moreover, it suffices to prove recovery of just s(2t) (first
source packet in the burst), as the same steps can be repeated
to recover the subsequent (BI

2 − 1) source packets belonging
to even time slots.

In order to recover s(1)(t) � s′(2t), the code C(1)
e which oper-

ates on a delay TMS =
T−1
2 � requires access to {x(1)(i)}t−1

i=0 ∪
{x(1)(i)}t+
 T−1

2 �
i=t+ BI

2

. As there are no erasures prior to time-2t,

clearly, coded sub-packets {x(1)(i)} are available. It can be
verified from Table II that none of the sub-packets among

{x(1)(i)}t+
 T−1
2 �

i=t+ BI
2

� {[s(1)(i)� p(1)(i)�]�}t+
 T−1
2 �

i=t+ BI
2

are erased. In

order to obtain the “last” coded sub-packet:
⎡

⎣

s(1)
(

t +
T−1
2 �

)

p(1)
(

t +
T−1
2 �

)

⎤

⎦ �

⎡

⎣

s
(

2t + 2
T−1
2 �

)

p
(

2t + 2
T−1
2 �

)

⎤

⎦,

which helps in recovery of s(1)(t), the decoder needs to wait
only till time 2(t +
T−1

2 �) ≤ 2t + T . Thus s′(2t) � s(1)(t) can
be recovered with a delay of at most T .

Similarly, in order to recover s′′(2t) � s(2)(t), consider the
code C(2)

e which operates on a delay TMS = �T−1
2 �. Using C(2)

e ,

the decoder requires access to {x(2)(i)}t−1
i=0 ∪ {x(2)(i)}t+� T−1

2 �
i=t+ BI

2

for recovering s(2)(t). Clearly, {x(2)(i)}t−1
i=0 are available as

there are no erasure prior to time-2t. From Table II, it can

be verified that no sub-packets among {x(2)(i)}t+� T−1
2 �

i=t+ BI
2

�

{[s(2)(i)� p(2)(i)�]�}t+� T−1
2 �

i=t+ BI
2

are erased. In order to obtain the

last coded sub-packet:
⎡

⎣

s(2)
(

t + �T−1
2 �

)

p(2)
(

t + �T−1
2 �

)

⎤

⎦ �

⎡

⎣

s
(

2t + 2�T−1
2 �

)

p
(

2t + 2�T−1
2 � + 1

)

⎤

⎦,

the decoder has to wait only till time 2(t + �T−1
2 �) + 1 ≤

2t + T . Thus s′′(2t) can also be recovered with a delay of at
most T .

2) Construction B (0 ≤ BL < BI < T): Construction A
presented in Section IV-A1 can be generalized (which will
be referred to as Construction B) in a straightforward manner
to any BL ≥ 0 by applying it separately across pack-
ets in even, odd time slots and concatenating the parity
packets.

• BL and BI are both odd: Let source packets have size
k = T . Construction A is applied to protect source packets
in even time slots from BI-bursty erasure patterns, which
generates parity packets (say, {p

I
(t)}t∈[0:∞)) of size
BI

2 �
at each time. Another instance of Construction A will
be applied to protect source packets in odd time slots
from BL-bursty erasure patterns, where it generates par-
ity packets (say, {p

L
(t)}t∈[0:∞)) of size
BL

2 � at each time.
Concatenation of parity packets generated from these
two codes results in parity packets {p(t)}t∈[0:∞) of size

BI

2 �+
BL
2 �, where p(t) � [p

I
(t)� p

L
(t)�]�. Clearly, the

resulting code having coded packets of the form (1) is a
(BI, BL, T)-UEP streaming code. Rate achievable, in this
case, is T

T+
 BI
2 �+
 BL

2 � .

• BL is odd, BI is even: Let source packets have size
k = T(T − 1). Source packets in even time slots will
be protected from BI-bursty erasure patterns by applying
Construction A, resulting in parity packets of size T
BI

2 �.
Similarly, application of another instance of Construction
A to protect source packets in odd time slots from BL-
bursty erasure patterns, generates parity packets of size
(T − 1)
BL

2 �. As in the previous case, parity packets
generated due to source packets in even and odd time

Authorized licensed use limited to: The University of Toronto. Downloaded on November 15,2022 at 20:23:07 UTC from IEEE Xplore. Restrictions apply.

1174 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 4, DECEMBER 2021

TABLE III
ACHIEVABLE RATES FOR CONSTRUCTION B PRESENTED IN

SECTION IV-A2

slots will be concatenated to get {p(t)}t∈[0:∞), where
each p(t) has size T
BI

2 � + (T − 1)
BL
2 �. The resulting

code is a (BI, BL, T)-UEP streaming code having rate
T(T−1)

T(T−1)+T
 BI
2 �+(T−1)
 BL

2 � > T−1
T−1+
 BI

2 �+
 BL
2 � .

In a similar manner, it is possible to obtain constructions for
the remaining cases of (BL: even, BI : odd) and (BL: even, BI :
even). The achievable rates are summarized in Table III.

B. Rate Upper Bounds for (BI, BL, T)-UEP Streaming Codes

In the following theorem, we upper bound the rate achiev-
able by a (BI, BL, T)-UEP streaming code.

Theorem 2: Let C be a (BI, BL, T)-UEP streaming code
with rate R. Then R satisfies:

R ≤

⎧

⎪
⎨

⎪
⎩

T+1

T+1+
⌈

BL
2

⌉

+
⌈

BI
2

⌉ BL: odd, BI : odd

T

T+
⌈

BL
2

⌉

+
⌈

BI
2

⌉ otherwise.
(18)

Proof: For j ≥ i, recall that sj
i � {s(t)}j

t=i and xj
i � {x(t)}j

t=i.
In addition, let s̃j

i � sj
i ∩ {s(i + 2�)}∞�=0. We will discuss

here only the case where BI and BL are both odd. For the
remaining cases, the proof can be extended along similar
lines. Let r � n − k denote the size of each parity packet
p(t). We will begin with providing an outline of the proof.
Consider a burst erasure of length BI erasing coded pack-
ets xBI−1

0 . Owing to the (BI, T)-recoverability of high-priority
source packets, s̃BI−1

0 can be recovered by time-(BI − 1 + T).
Assume that low-priority source packets s̃BI−BL−3

1 and par-
ity packet p(BI − 1) are “revealed” to the decoder. Together

with the high-priority source packets s̃BI−BL−2
0 , which are

already recovered, the decoder can reconstruct the coded pack-
ets x(0), . . . , x(BI − BL − 2). As p(BI − 1) is revealed and
s(BI − 1) is recovered, coded packet x(BI − 1) is also known
to the decoder. Hence, the erased coded packets are effectively
restricted to within time slots [BI −BL −1 : BI −2] (a burst of
length BI). Owing to the (BL, T)-recoverability of low-priority
source packets, s̃BI−2

BI−BL−1 can be recovered. In summary, the

decoder can retrieve all of xBI−1+T
0 (contain “information” of

(BI + T)k symbols) using {xBI−1+T
BI

, s̃BI−BL−3
1 , p(BI − 1)} (a

total of T(k + r) + (BI−BL−2
2)k + r symbols). Thus, we have

(BI−BL−2
2)k + r + T(k + r) ≥ (BI + T)k. As rate is given by

k
k+r , we thus have an upper bound on the rate. We will now
formalize this idea.

(

BI − BL − 2

2

)

k + r + T(k + r) (19)

≥ H
(

s̃BI−BL−3
1

)

+ H
(

p(BI − 1)
)

+ H
(

xBI+T−1
BI

)

≥ H
(

s̃BI−BL−3
1 , p(BI − 1), xBI+T−1

BI

)

= H
(

s̃BI−BL−3
1 , p(BI − 1), xBI+T−1

BI
, s̃BI−1

0

)

(20)

= H
(

sBI−BL−2
0 , s(BI − 1),

p(BI − 1), xBI+T−1
BI

, s̃BI−3
BI−BL

)

(21)

= H
(

xBI−BL−2
0 , xBI−1+T

BI−1 , s̃BI−3
BI−BL

)

(22)

= H
(

xBI−BL−2
0 , xBI−1+T

BI−1 , s̃BI−3
BI−BL

, s̃BI−2
BI−BL−1

)

(23)

= H
(

xBI−BL−2
0 , xBI−1+T

BI−1 , sBI−2
BI−BL−1

)

(24)

= H
(

xBI−1+T
0

)

(25)

= (BI + T)k, (26)

where (20) follows from the (BI, T)-recoverability property of
high-priority source packets; (21) is obtained by rearranging
the terms in (20); (22) is true as parity packets in time slots
[0 : BI − BL − 2] can be obtained as a deterministic func-
tion of sBI−BL−2

0 ; (23) follows from the (BL, T)-recoverability
property of low-priority source packets; (24) is obtained by
rearranging the terms in (23); (25) follows as parity packets
in time slots [0 : BI − 2] can be obtained as a determinis-
tic function of sBI−2

0 ; (26) follows from the fact that source
symbols are independent. From (19) and (26), we have:

(T + 1)r ≥
(

BI + BL + 2

2

)

k

=
(⌈

BI

2

⌉

+
⌈

BL

2

⌉)

k. (27)

From (27),

R = k

k + r
≤ T + 1

T + 1 +
⌈

BI
2

⌉

+
⌈

BL
2

⌉ .

Near-Optimality of Construction B: From Table III and (18),
it can be inferred that the rates achievable by Construction B
are away within one unit of delay T from the optimal rates.

Remark 6: From (2) and (18), it can be inferred that if BL ∈
{BI − 1, BI}, (BMS = BI, TMS = T)-streaming codes proposed
in [16] are optimal.

C. Rate-Optimal (BI, BL, T)-UEP Streaming Codes: BI is
Odd and BL is Even

Recall that in the near-optimal Construction B, the cen-
tral idea is to apply Construction A separately on high and
low priority source packets. We will now present two, more
involved, coding schemes (Construction C & D), where we
perform joint coding across high and low priority source pack-
ets. As we will see now, such an approach leads to optimal
code rates which meet (18). Let Beff �
BI

2 �+ BL
2 . We assume

that BL ≤ BI −2 as optimal codes exist trivially otherwise (see
Remark 6). Moreover, as BI is odd and BL is even, we have
BL < BI−2. Construction C and Construction D cover regimes

Authorized licensed use limited to: The University of Toronto. Downloaded on November 15,2022 at 20:23:07 UTC from IEEE Xplore. Restrictions apply.

HAGHIFAM et al.: ON STREAMING CODES WITH UNEQUAL ERROR PROTECTION 1175

Fig. 4. Each source packet s(t) of size T is partitioned into three sub-packets;
s′(t) of size T − 2Beff; {s′′(t), s′′′(t)} of size Beff each.

T ≥ 2Beff and T < 2Beff, respectively. Both constructions
achieve the rate:

Ropt = T

T + Beff
, (28)

which meets the upper bound in (18).
1) Construction C (T ≥ 2Beff): From (28), it follows that

the condition T ≥ 2Beff results in Ropt ≥ 2
3 . Hence, this regime

may be referred to as the high-rate regime. Let the source
packet size be k = T . We partition the source packet s(t)
into three sub-packets: s′(t) � [s0(t) s1(t) . . . sT−2Beff−1(t)]T ,
s′′(t) � [sT−2Beff(t) sT−2Beff+1(t) · · · sT−Beff−1(t)]T and
s′′′(t) � [sT−Beff(t) sT−Beff+1(t) · · · sT−1(t)]T (see Fig. 4).
In this construction, each parity packet p(t) is composed of
three components; p′(t), p′′(t), p′′′(t):

p(t) = p′(t) + p′′(t) + p′′′(t), (29)

where {p(t), p′(t), p′′(t), p′′′(t)} ⊆ F
Beff
q . The sub-packets

{s′′(t)}, {s′′′(t)} are replicated as parity packet components in
the following manner:

p′′(t) =
{

s′′(t − T + 1) (t − T) is odd
s′′′(t − T) (t − T) is even,

(30)

p′′′(t) =
{

s′′(t − BL) t is odd
s′′′(t − BL − 1) t is even.

(31)

In other words, (30) and (31) imply the following. For any
packet s(t) in an even time slot t, we have s′′(t) replicated as
p′′(t + T − 1) = s′′(t), s′′′(t) replicated as p′′(t + T) = s′′′(t).
Similarly, for any packet s(t) in an odd time slot t, the sub-
packet s′′(t) is replicated as p′′′(t + BL) = s′′(t) and s′′′(t)
is replicated as p′′′(t + BL + 1) = s′′′(t). The remaining
parity packet component p′(t) is a function of sub-packets
{s′(t′)}t′∈[0:t]. In the following, we discuss how p′(t) is deter-
mined, which will complete the description of our code
construction.

Let λ � (T − 2Beff)Beff. Let J(e) � 2[0 :
BI
2 � − 1] =

{0, 2, . . . , 2(
BI
2 � − 1)}, i.e., all even numbers in [0 : BI − 1].

For j ∈ J(e), let v(e)
j (t) denote the sum of all sub-packets within

the set {s′(�)}�∈[0:t−1], which are precisely BI + 1 time slots
apart, starting from time-j, i.e.,

v(e)
j (t) =

∑

i∈I(e)
j (t)

s′(i), (32)

where I(e)
j (t) � {j, j+ (BI +1), j+2(BI +1), . . .}∩ [0 : t − 1].

Note that all sub-packets involved in (32) belong to even
time slots. Similarly, we define J(o) � 2[0 : BL

2 − 1] + 1 =
{1, 3, . . . , 2(BL

2 −1)+1}, i.e., all odd numbers in [1 : BL −1].
For j ∈ J(o), let v(o)

j (t) denote the sum of all sub-packets within
{s′(�)}�∈[0:t−1], which are precisely BL time slots apart, starting
from time-j. i.e.,

v(o)
j (t) =

∑

i∈I(o)
j (t)

s′(i), (33)

where I(o)
j (t) � {j, j + BL, j + 2BL, . . .} ∩ [0 : t − 1]. All sub-

packets involved in (33) belong to odd time slots. Let v(t) be a
column vector of size λ×1, which is obtained by concatenating
all the Beff column vectors {v(e)

j (t)}j∈J(e) ∪ {v(o)
j (t)}j∈J(o) . i.e.,

v(t) takes the form:

v(t) �
[

v(e)(t)
v(o)(t)

]

,

where:

v(e)(t) �

⎡

⎢

⎢

⎢

⎢

⎢

⎣

v(e)
0 (t)

v(e)
2 (t)
...

v(e)

2
(⌈

BI
2

⌉

−1
)(t)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, v(o)(t) �

⎡

⎢

⎢

⎢

⎢

⎢

⎣

v(o)
1 (t)

v(o)
3 (t)
...

v(o)

2
(

BL
2 −1

)

+1
(t)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

(34)

The parity packet component p′(t) consists of Beff consec-
utive entries of v(t) in the following manner; p′(0) consists of
first Beff entries of v(0), p′(1) consists of next Beff entries
of v(1),. . . , p′(T − 2Beff − 1) consists of last Beff entries
of v(T − 2Beff − 1), p′(T − 2Beff) consists of first Beff
entries of v(T − 2Beff) and so on. i.e., in general, if t′ = t
mod (T−2Beff), p′(t) consists of entries [t′Beff : (t′+1)Beff−1]
of v(t). This completes the construction. In Appendix A, we
show that the construction satisfies all the desired properties
of a (BI, BL, T)-UEP streaming code.

Example 3: We consider here the construction of a rate-
optimal (BI = 5, BL = 2, T = 9)-UEP streaming code. Here,
source packet size k = T = 9, Beff = 4, λ = 4, J(e) =
{0, 2, 4}, J(o) = {1}. Set s(t) � 0 if t < 0. We have: p′(0) =
[0 0 0 0]�, p′(1) = [s0(0) 0 0 0]�, p′(2) = [s0(0) 0 0 s0(1)]�,
p′(3) = [s0(0) s0(2) 0 s0(1)]�, p′(4) = [s0(0) s0(2) 0 s0(1) +
s0(3)]�, p′(5) = [s0(0) s0(2) s0(4) s0(1) + s0(3)]�, p′(6) =
[s0(0) s0(2) s0(4) s0(1) + s0(3) + s0(5)]�, p′(7) = [s0(0) +
s0(6) s0(2) s0(4) s0(1) + s0(3) + s0(5)]� etc. (see Fig. 5).

2) Construction D (T < 2Beff): Let the source packet
size be k = κT , where κ � �T

2 �BL
2 . The parity pack-

ets {p(t)} here will have size κBeff. Let C(o), C(e) denote
an optimal (BMS = BL

2 , TMS = �T
2 �)-streaming code and

(BMS =
BI
2 �, TMS = �T

2 �)-streaming code, respectively.
Each source packet s(t) is partitioned into two sub-packets
{s′(t), s′′(t)}, where the partitioning scheme differs based on
whether the packet belongs to an even or odd time slot. In even
time slots, we have: s′(2t) � [s0(2t) s1(2t) . . . sκBeff−1(2t)]T

︸ ︷︷ ︸

κBeff symbols

Authorized licensed use limited to: The University of Toronto. Downloaded on November 15,2022 at 20:23:07 UTC from IEEE Xplore. Restrictions apply.

1176 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 4, DECEMBER 2021

Fig. 5. A rate-optimal (BI = 5, BL = 2, T = 9)-UEP streaming code obtained via Construction C. Here red, green, blue symbols indicate contributions from
p′(t), p′′(t) and p′′′(t), respectively.

and s′′(2t) � [sκBeff(2t) s1(2t) . . . sκT−1(2t)]T

︸ ︷︷ ︸

κ(T−Beff) symbols

. For source

packets in odd time slots, we have: s′(2t + 1) �
[s0(2t + 1) s1(2t + 1) . . . sκν−1(2t + 1)]T
︸ ︷︷ ︸

κν symbols

and s′′(2t + 1) �

[sκν(2t + 1) s1(2t + 1) . . . sκT−1(2t + 1)]T
︸ ︷︷ ︸

κ(T−ν) symbols

, where ν �

 T
2 �−
 BI

2 �
BL
2

Beff. It can easily be verified that if T < 2Beff, we

have ν < T .
We apply C(e) to {s′′(2t)}t∈[0:∞) (sub-packets from even time

slots) to generate parity sub-packets {p(e)(i)}i∈[0:∞). Each par-

ity sub-packet p(e)(i) has size κ(T−Beff)

� T
2 �
BI

2 �. Similarly, C(o) is

applied to {s′′(2t+1)}t∈[0:∞) (sub-packets from odd time slots)
to generate parity sub-packets {p(o)(i)}i∈[0:∞) of size κ(T−ν)

� T
2 �

BL
2

each. It can be verified that κ(T−Beff)

� T
2 �
BI

2 �+ κ(T−ν)

� T
2 �

BL
2 = κBeff,

i.e., sizes of p(e)(i) and p(o)(i) add up to κBeff.
If T is even, in odd time slots, we have:

p(2t + 1) =
[

p(e)(t + 1)

p(o)(t)

]

, t ∈ [0 : ∞).

Similarly, if T is odd, in even time slots, we have:

p(2t) =
[

p(e)(t)
p(o)(t − 1)

]

, t ∈ [0 : ∞).

Parity packets in remaining time slots are obtained as a
function of s′(.)’s in even and odd time slots, in the follow-
ing manner. Let ν′ �
T

2 � −
BI
2 �, λ′ � κν BL

2 = κν′Beff.
Consider v(o)

j (t) and v(o)(t) as defined in (33) and (34). Here,
the vector v(o)(t) has size BL

2 κν = λ′. For i ∈ [0 : ν′ − 1],
let v(o,i)(t) denote the vector composed of κBeff consecutive

Fig. 6. The source packets s(2t) and s(2t+1) are combined to form a single
long source packet in time-(2t + 1). In the presence of an erasure burst of
length BI , the source packet s(2t) can only be recovered at time-(2t+2T +1)

(delay of 2T + 1 time slots).

Fig. 7. In time-t, the source packets s(2t) and s(2t + 1) are combined to
form a single long source packet. As the source requires knowledge of source
packets s(2t) and s(2t + 1) in time-t, this approach becomes increasingly
infeasible as t increases.

entries [iκBeff : (i + 1)κBeff − 1] of v(o)(t). If T is even, in
even time slots, we have:

p(2t) = v(o,it)(2t) + s′(2t − T), t ∈ [0 : ∞), (35)

Authorized licensed use limited to: The University of Toronto. Downloaded on November 15,2022 at 20:23:07 UTC from IEEE Xplore. Restrictions apply.

HAGHIFAM et al.: ON STREAMING CODES WITH UNEQUAL ERROR PROTECTION 1177

Fig. 8. Burst histogram.

where it = t mod ν′. Similarly, if T is odd, in odd time slots,
we have:

p(2t + 1) = v(o,it)(2t + 1) + s′(2t + 1 − T), t ∈ [0 : ∞).

(36)

This completes the construction. In Appendix B, we show
that the construction satisfies all the desired properties of a
(BI, BL, T)-UEP streaming code.

Remark 7 (On the requirement of BI odd and BL even):
Constructions C and D do not generalize if BI is even, as
the (BI, T)-recoverability requirement of high-priority source
packets is not satisfied in this case (we will discuss this in
Appendices A and B). If BI and BL are both odd, Construction
B already achieves the rate T

T+Beff
.

D. Need for Packet-Level UEP

It is quite natural to ask the question whether one can simply
combine two adjacent source packets (a high-priority source
packet and a low-priority source packet) into a single source
packet and then apply symbol-level UEP (with γ = 0.5)
instead of packet-level UEP. The resulting scheme achieves
a rate of T

T+ BI+BL
2

, which is a strict improvement over the

achievable rates in the packet-level UEP setting. Thus, on a
first look, it might seem that such a scheme subsumes the need
for discussing packet-level UEP schemes. However, it turns
out that this is not the case. In the following, we describe
two possible ways of combining source packets to apply
the symbol-level UEP and highlight the underlying practical
issues.

Recall our problem setting (Section II), where it is assumed
that a source packet s(t) arrives at the source at time-t. In
Fig. 6, we consider an approach where in every odd time slot
(2t + 1), the source packets s(2t) and s(2t + 1) are combined
together to form a single double-sized source packet. As can
be noted from Fig. 6, using a (γ = 0.5, BI, BL, T) symbol-
level UEP scheme, the source packet s(0) is guaranteed to
be recovered only by time-(2T + 1). Thus, the actual realized
delay approximately doubles compared to using a (BI, BL, T)

packet-level UEP scheme. If we consider the alternative
described in Fig. 7, in each time-t, the source requires knowl-
edge of the source packet s(2t) (ahead of time). The required
lookahead grows with t, which makes the scheme practically
infeasible.

V. NUMERICAL STUDIES

All the code constructions and optimality results in the paper
are stated for deterministic burst erasure channel models. In
this section, we study the performance of our proposed cod-
ing schemes with respect to the stochastic channel models;
Gilbert channel and Fritchman channel. The Gilbert channel
is a Markov model consisting of a good state (G) and a bad
state (E). Let α and β denote the transition probabilities from
the good state to the bad state and vice versa, respectively.
In the good state, the packet-loss probability is zero, whereas
in the bad state, each coded packet is lost with probability 1.
Figure 8(a) shows the burst length histogram of the Gilbert
channel with the parameters (α, β) = (5 × 10−3, 0.5). The
Fritchman channel is a generalization of the Gilbert channel
and consists of M + 1 states; one good state denoted by G
and M bad states denoted by E1, E2, . . . , EM . If the chan-
nel state is G in time-t, then it will either transition to E1
with probability α or else, stay at state G with probability
1 − α in time-(t + 1). If the channel state is Ei for some
i ∈ [1 : M] in time-t, it will transition either to Ei+1 (let
EM+1 � G) with probability β or else, stay at state Ei with
probability 1−β. As in the Gilbert channel, in the good state,
each coded packet is received perfectly, whereas in the bad
states each coded packet is lost with probability 1. Fritchman
and related higher-order Markov models are commonly used
to model fade durations in wireless links. Figure 8(b) shows
the burst length histogram of the Fritchman channel with the
parameters (α, β, M) = (5 × 10−3, 0.5, 3).

In this section, we compare our UEP code constructions
with two baseline schemes; MDS-interleaved and MS coding
schemes. In our comparison, we keep delay constraint and rate
roughly the same for all the codes. In an MDS-interleaved
coding scheme, [nMDS, kMDS]-MDS codes are diagonally

Authorized licensed use limited to: The University of Toronto. Downloaded on November 15,2022 at 20:23:07 UTC from IEEE Xplore. Restrictions apply.

1178 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 4, DECEMBER 2021

Fig. 9. Symbol-level UEP. The code parameters are given in Table IV.

TABLE IV
THE CODE PARAMETERS USED FOR THE SYMBOL-LEVEL UEP RESULTS

Fig. 10. Packet-level UEP. The code parameters are given in Table V.

TABLE V
THE CODE PARAMETERS USED FOR THE PACKET-LEVEL UEP RESULTS

interleaved to produce streaming codes. The resulting cod-
ing scheme can tolerate upto nMDS − kMDS arbitrary packet
erasures with a delay of nMDS − 1. It is known that [2] MDS-
interleaved codes, in general, do not achieve the best-possible
trade-off between delay, rate and burst correction capability. In
particular, for a fixed rate and delay, MS codes tolerate larger
burst lengths compared to MDS-interleaved codes. A compar-
ison of (2) with either (5) or (18) suggests that for a given rate
and delay, UEP streaming codes allow for the choice of BL ≤
BMS ≤ BI . i.e., it is possible to provide improved burst correc-
tion capability for high-priority source symbols/packets at the

cost of slightly degraded performance for low-priority source
symbols/packets.

In Fig. 9(a) and 9(b), we show simulation results under
the symbol-level UEP scenario for the Gilbert channel and
the Fritchman channel, respectively. The code parameters
are summarized in Table IV. In Fig. 10(a) and 10(b), we
compare our coding schemes with other baseline schemes
under the packet-level UEP scenario (code parameters are
provided in Table V). All the numbers reported here are
generated by simulating the codes over 107 channel uses.
As can be seen, under both scenarios, our constructions

Authorized licensed use limited to: The University of Toronto. Downloaded on November 15,2022 at 20:23:07 UTC from IEEE Xplore. Restrictions apply.

HAGHIFAM et al.: ON STREAMING CODES WITH UNEQUAL ERROR PROTECTION 1179

achieve lower error rate for the high-priority part of the source
stream.

Remark 8: For typical interactive applications, the
maximum allowable end-to-end latency should not exceed
150 ms. For instance, in a VoIP application where each
audio packet spans 10 or 20 ms of speech, considering 30 to
40 ms propagation delay for coast-to-coast communication,
the maximum allowed delay T can be between 5 and 12.
For a video application at 2 Mbps and packet size of
1500 bytes, a delay T ≈ 20 may be considered. In terms
of the code rate, the rate of 2/3 is typically used in VoIP
applications [18], [19].

Remark 9: Unlike MDS codes, where only the total number
of erasures matter, the performance of MS and UEP streaming
codes are strongly affected by how erasures are distributed.
A realization of a stochastic erasure channel need not satisfy
the constraints in Definition 2. If long bursts or short guard
intervals (see Remark 1) occur, recovery of an erased source
symbol/packet using an MS code or a UEP streaming code
may become impossible. In Appendix C, we provide some
additional numerical results in this regard.

REFERENCES

[1] M. Haghifam, A. Badr, A. Khisti, X. Zhu, W.-T. Dan, and
J. Apostolopoulos, “Streaming codes with unequal error protection
against burst losses,” in Proc. 29th Biennial Symp. Commun. (BSC),
2018, pp. 1–5.

[2] E. Martinian and C.-E. W. Sundberg, “Burst erasure correction codes
with low decoding delay,” IEEE Trans. Inf. Theory, vol. 50, no. 10,
pp. 2494–2502, Oct. 2004.

[3] A. Badr, P. Patil, A. Khisti, W.-T. Tan, and J. Apostolopoulos, “Layered
constructions for low-delay streaming codes,” IEEE Trans. Inf. Theory,
vol. 63, no. 1, pp. 111–141, Jan. 2017.

[4] S. L. Fong, A. Khisti, B. Li, W.-T. Tan, X. Zhu, and J. Apostolopoulos,
“Optimal streaming codes for channels with burst and arbitrary era-
sures,” IEEE Trans. Inf. Theory, vol. 65, no. 7, pp. 4274–4292, Jul. 2019.

[5] M. N. Krishnan, D. Shukla, and P. V. Kumar, “Rate-optimal streaming
codes for channels with burst and random erasures,” IEEE Trans. Inf.
Theory, vol. 66, no. 8, pp. 4869–4891, Aug. 2020.

[6] P. Patil, A. Badr, A. Khisti, and W.-T. Tan, “Delay-optimal streaming
codes under source-channel rate mismatch,” in Proc. Asilomar Conf.
Signals Syst. Comput., 2013, pp. 2094–2099.

[7] D. Leong and T. Ho, “Erasure coding for real-time streaming,” in
Proc. Int. Symp. Inf. Theory (ISIT), 2012, pp. 289–293.

[8] A. Badr, A. Khisti, and E. Martinian, “Diversity embedded streaming
erasure codes (DE-SCo): Constructions and optimality,” IEEE J. Sel.
Areas Commun., vol. 29, no. 5, pp. 1042–1054, May 2011.

[9] A. Badr, A. Khisti, W.-T. Tan, and J. Apostolopoulos, “Perfecting
Protection for Interactive Multimedia: A survey of forward error correc-
tion for low-delay interactive applications,” IEEE Signal Process. Mag.,
vol. 34, no. 2, pp. 95–113, Mar. 2017.

[10] M. Rudow and K. V. Rashmi, “Online versus offline rate in streaming
codes for variable-size messages,” in Proc. Int. Symp. Inf. Theory (ISIT),
2020, pp. 509–514.

[11] J. Apostolopoulos, W.-T. Tan, and S. J. Wee, “Video streaming:
Concepts, algorithms, and systems,” HP Laboratories, Palo Alto, CA,
USA, Rep. HPL-2002-260, 2002.

[12] E. Bedrosian, “Weighted PCM,” IRE Trans. Inf. Theory, vol. 4, no. 1,
pp. 45–49, 1958.

[13] B. Masnick and J. Wolf, “On linear unequal error protection codes,”
IEEE Trans. Inf. Theory, vol. 13, no. 4, pp. 600–607, Oct. 1967.

[14] A. Albanese, J. Blomer, J. Edmonds, M. Luby, and M. Sudan, “Priority
encoding transmission,” IEEE Trans. Inf. Theory, vol. 42, no. 6,
pp. 1737–1744, Nov. 1996.

[15] Y. Geng, X. Zhang, C. Zhou, and Z. Guo, “Unequal error protection
for real-time video streaming using expanding window Reed-Solomon
code,” in Proc. Int. Conf. Image Process. (ICIP), 2015, pp. 3763–3767.

[16] E. Martinian and M. Trott, “Delay-optimal burst erasure code construc-
tion,” in Proc. Int. Symp. Inf. Theory (ISIT), 2007, pp. 1006–1010.

[17] H. D. L. Hollmann and L. M. G. M. Tolhuizen, “Optimal codes for
correcting a single (wrap-around) burst of erasures,” IEEE Trans. Inf.
Theory, vol. 54, no. 9, pp. 4361–4364, Sep. 2008.

[18] J. S. Marcus, Designing Wide Area Networks and Internetworks: A
Practical Guide. Boston, MA, USA: Addison-Wesley Professional,
1999.

[19] A. Badr, A. Khisti, W.-T. Tan, and J. Apostolopoulos, “Perfecting protec-
tion for interactive multimedia: A survey of forward error correction for
low-delay interactive applications,” IEEE Signal Process. Mag., vol. 34,
no. 2, pp. 95–113, Mar. 2017.

Authorized licensed use limited to: The University of Toronto. Downloaded on November 15,2022 at 20:23:07 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

